
 

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 11 No. 3 2025 www.iiardjournals.org  
 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 71 

 

Application of Runge-Kutta to Solving the Nonlinear Ordinary 

Differential Equation of a Deformed Cylindrical Compressible 

Blatz-Ko Material Under Torsional Effects. 
 

 

Egbuhuzor Udechukwu Peter1 and Udoh Ndipmong Augustine2 
1,2Mathematics and Statistics Department, Federal University Otuoke, Bayelsa State 

egbuhuzorup@fuotuoke.edu.ng 

DOI: 10.56201/ijasmt.vol.11.no3.2025.pg71.83 

 

Abstract 

This paper discussed the homogeneous, isotropic, compressible nonlinearly elastic cylindrical 

Blatz-Ko material deforming under pure torsion. The mathematical model of the radial 

deformation of the structure resulted into a highly nonlinear second-order ordinary differential 

equation with boundary conditions and the solution was obtained using Runge-Kutta fourth order 

method and implemented using MATLAB software. The results show that deformations decrease 

towards the origin and a decrease in volume is observed. The effects of stress and applied pressure 

on the material under study were compared and results showed that the stress increased as the 

radius of the material decreases. 

 

Keywords: Blatz-Ko, Matlab, Runge-Kutta, Stress, Deformation, Hyperelastic, Material, 
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INTRODUCTION 

Understanding how materials deform under different loads is important for engineering and design 

in materials science and continuum mechanics. Hyperelastic materials, which can withstand 

massive deformations and return to their original shape, play an important role in biomechanics, 

soft robotics, and materials engineering. Unlike linear elasticity models, finite deformation 

theories are required to represent the complicated behavior of these materials. 

Torsional stresses frequently cause considerable deformation in cylindrical structures such as 

blood veins and elastomeric tubes. Although incompressible hyperelastic materials, such as 

rubbers, have well-known solutions for finite torsion (Rivlin, 1997), compressible materials 

provide new issues. The lack of isochoric restrictions complicates their deformation behavior, 

necessitating particular strain-energy functions for correct modeling (Polignone and Horgan, 1991; 

Kirkinis and Ogden, 2002). 

Compressive materials under torsion have been studied theoretically and empirically to gain a 

better understanding of their behavior. Shrivastava et al. (1982) and Valiollahi et al. (2019) 

contributed insights into the torque required for sustaining deformation, whereas Currie and Hayes 

(1981) offered constitutive relations for pure torsion. This study will build on these foundations 

by investigating the torsional response of compressible Blatz-Ko materials using the Runge-Kutta 

method for numerical solutions. 

 

Chibueze and Julius (2021) centred on isotropic, incompressible hollow cylindrical structure that 

is deforming under pure azimuthal shear. Their focus was on development of the constitutive law 
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for an initially stressed material that has no intrinsic material symmetry. Kassianidis et al., (2008) 

studied the problem of azimuthal shear of a cylinder subject to finite deformation, a general form 

of strain energy function was used and a closed form solution was obtained for a reinforced Neo 

Hookean material which was used to determine the domain of strong ellipticity in terms of the 

relationship between the shear strain and the angle.  

Bechir et al., (2006) studied the behaviour of isotropic and incompressible vulcanized natural 

rubbers and that of quasi-incompressible carbon black filled vulcanized natural rubbers 

considering both theoretically and experimentally obtained solutions by generalizing the neo-

Hookean model and derived an original form of the strain energy density function. Jiang and 

Ogden (2000) provided some new solutions for the axial shear of a circular cylindrical tube of 

compressible isotopic elastic material and discussed explicit solution for several forms of the strain 

energy function, analyzing the plain strain characterized of finite torsion shear cylinder of a 

compressible elastic material. 

This work intends to bridge this gap by numerically analyzing the torsional behavior of 

compressible Blatz-Ko materials using the Runge-Kutta technique, revealing new insights into 

their mechanical response and broadening the scope of finite deformation theories for 

compressible materials. 

 

MATHEMATICAL FORMULATION 

Consider the cylindrical deformation of a cylinder where the deformation takes the point with the 

cylindrical coordinates ( ), , zr 
 in the reference configuration to the coordinates ( ), , ZR 

. Let Re  

represent a unit vector normal to the cylinder 
e  represent a unit vector circumferential to the 

cylinder chosen to make  , ,R Ze e e  a right-handed triad. Ze is parallel to the k vector. 

The triad of vectors  , ,R Ze e e  is an orthonormal basis. Consequently, tensors can be represented 

as components in this basis. In particular, a general second order tensor S can be represented as a 

3x3 matrix given as 

RR R RZ

R Z

ZR Z ZZ

S S S

S S S S

S S S



  



 
 

=  
 
            (1) 

 

The Deformation Gradient Tensor: Let us define the gradient operator, which, in cylindrical-

polar coordinates, has the representation  

R Z

e
e e

r R z





  
 = + +

            (2) 

In addition, the nonzero derivatives of the basis vectors are 

R
R

ee
e e

r







 = = = −

           (3) 

Then the deformation gradient tensor F can be represented as a dyadic product of the tensor S with 

the gradient operator as 
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1

1

R R R

R R

Z Z Z

S S S

r R z

S S SR
F S S S

r r z

S S S

r r z

  







   
   
 

   
=  =

   
 
   

            (4) 

 

Deformation Measures: Let B represent the Left Cauchy-Green deformation tensor, then, 

. T

ik jkB F F B F F=  =
 ;    det( )J F=  

The invariants of B are given as: 
3

1

1

kk

k

I trace B B
=

= =
         (5) 

( )2 2

2 1

1

2
I I trace B= −

         (6) 
2

3 det( )I B J= =          (7) 

Let 1 2 3, and e e e  denote the three eigenvalues of B.  The principal stretches are given as 

1 1 2 2 3 3, ,e e e  = = =
 

 

Stress Measures 

Usually stress-strain laws are given as equations relating Cauchy stress, (`true’ stress) ij
to left 

Cauchy-Green deformation tensor. The Cauchy (“true”) stress represents the force per unit 

deformed area in the solid and is defined by 
( )

0
lim

n

j

i ij
dA

dP
n

dA


→
=

         (8) 

Note that, by definition, if the solid is subjected to some history of strain, the rate of change of the 

strain energy density W (F) must equal the rate of mechanical work done on the material per unit 

reference volume. Equivalently, W only depends on F through its principal stretches 1 2 3, ,    (the 

square roots of the principal values of B).  

The ratio of the deformed configuration to the undeformed configuration is called a stretch, i.e., 

1

| |
Stretch( ) , Stretch in the radial direction

| |

dR

dr
 =

 

2

| |
Stretch( ) , Stretch in the angular direction

| |

d

d





=

 

3

| |
Stretch( ) , Stretch in the azimuthal direction

| |

dZ

dz
 =

 

With a slight abuse of notation, we write 1 2 3( , , ).W W I I I=  
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To compute the explicit form of the Cauchy stress tensor for a compressible material in terms of 

the invariants and their derivatives we use 

131 2
1 32 , 2 2 , 2T T T II I

F I F F B I F
F F F

− 
= = − =

    and 
2

0 1 2 ,I B B   = + +  

Where the constants i  depend on the invariants and are given explicitly by 

0

3

2 ,
W

J p
I




= −
  

1 1

1 1

1 2

2 2 ,
W W

J J I
I I

 − − 
= +

 

1

2

2

2 .
W

J
I

 − 
= −

  
where p is the hydrostatic pressure and we choose p = 0 for compressible materials. 

 

Development of Model Equation for the Finite Deformation of a Cylindrical Compressible 

Hyperelastic Material 

Let us consider the torsional finite deformation of an elastic solid circular cylinder of radius a  due 

to applied twisting moments at its ends, 

( ) 0

0 2

0

R R r r a

z

Z z z L



    

=  

= +  

=    

where ( ), , zr 
 and ( ), , ZR 

 are the cylindrical coordinates in the reference and in the current 

configurations, respectively, / 0,dR dr   and the constant τ > 0 is the twist per unit undeformed 

length. is a positive constant which accounts for initial compressibility. Let us consider the strain 

energy function in terms of the first three principal invariants of B, 1 2 3( , , ).W W I I I= The 

deformation gradient tensor F is given by 

' 0 0

0

0 0 1

R

R
F R

r





 
 
 =
 
 
            (9) 

and the physical components of B and B2 are given by 

2 2

2
2 2

2

' 0 0

. 0

0 1

T

R

R
B F F R R

r

R



 



 
 
 = = +
 
 
   , 

4 4

2
2 2

2 2 2 2 2 2 2

2 2

2
2 2 2 2

2

' 0 0

0

0 1

R

R R
B R R R R R

r r

R
R R R R

r



    

   

 
 
 
    
 = + + + +   
    
 

  + + +  
    

            (10) 

The first three principal strain invariants are 
2

2 2 2 2

1 2
' 1

R
I R R

r
 = + + +

         (11) 
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2 2
2 2

2 2 2 2 4 4 2 2 2 2

2 2 2

1
1 ' ' 2 1

2

R R
I R R R R R

r r
    

     
  = + + + − + + + +              (12) 
2 2 2 2

2 2 2 2 2 2

2 2 2

'
' '

R R R
I R R R

r r


  = + + +

       (13) 
2 2 2

3 2

'R R
I

r


=

           (14) 

We obtain the physical components of the Cauchy stress as 
2 2

2
2 2

0 1 2

4 4

2
2 2

2 2 2 2 2 2

2 2 2

2
2 2 2 2

2

' 0 0
1 0 0

0 1 0 0

0 0 1
0 1

' 0 0

0

0 1

RR R RZ

R Z

ZR Z ZZ

R

R
R R

r

R

R

R R
R R R R R

r r

R
R R R R

r



  




  

       

  




     

   

 
     
     = = + +     
       

  

 
 
 
    
 + + + + +   
    
 

  + + +  
      (15) 

We shall consider the Blatz-Ko strain energy function for compressible nonlinear elastic behaviour 

of the material under study given by Blatz and Ko (1962)  

1/22
3

3

2 5
2

I
W I

I

  
= + − 

           (16) 

Where:   is the initial shear modulus of the material. 

 
2 2 2 4 2 4

2 2 2 2 2 2 4 2 4 2 2 2 2 4 2

2 3 3

,
2 2 ' 2 ' ' ' ' '

W r W r r r r r

I I R R I RR R R R R R R R R

   

     

  
= = = − − − − 

     (17) 
2 2 4 2 4

0 2 2 2 4 2 4 2 2 2 2 4 2

3

2 '
2

2 ' ' ' ' '

W RR r r r r r
J

I r RR R R R R R R R R

  


    

  
= = − − − −  

      (18) 
3 2 3

0 3 3 3

3

2 1
' ' ' '

W r r r r
J

I RR RR RR R R


 

   

 
= = − − − − 

        (19) 
3 2 3 3

1

1 1 3 3 3 3 3 3 3 3

2

2
' ' ' '

W r r r r
J I

I R R RR RR R R

    


   

− 
= = + + +

      (20) 
3

1

2 3 3 3

2

2 .
'

W r
J

I R R






− 
= − = −

          (21) 
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Then, 

3 3'
RR

r

RR


 


= −

, 

3

3 '

r

R R



 


= −

        (22) 

The equilibrium equations in cylindrical coordinates is given as 

( )
1 1RRR RZ

RR R R

dd d
b a

dr R d dz R





 
   


+ + + − + =

     (23) 

1 2R Z

R

d d d
b a

dr R d dz R

  

  

  
  


+ + + + =

       (24) 

1 1ZZR ZZ
ZR Z Z

dd d
b a

dr R d dz R

 
  


+ + + + =

      (25) 

              

where 

,Rb b and Zb  are the components of the body force 

,Ra a and Zb  are the components of acceleration. 

The equilibrium equations in the absence of any body force are reduced to 

( )
1 1

0
RRR RZ

RR

dd d

dr R d dz R





 
 


+ + + − =

       (26) 

1 2
0

R Z

R

d d d

dr R d dz R

  



  



+ + + =

        (27) 

1 1
0

ZZR ZZ
ZR

dd d

dr R d dz R

 



+ + + =

        (28) 

We substitute the obtained component stresses into the equilibrium equations above, we get, 
3

3 3 3 3 3

1
0

' ' '

d r r r

dr RR R RR R R

  


  

  
− + − + =  

          (29) 
2 2 3 2 2

3 2 4 3 4 3

' (3 '' ' ) '
0

' '

RR r RR R r R rR

R R R R

   

 

 − + −
− + = 
        (30) 

Simplifying further,  

( )3 2 3 3 2 2 3 23 '' ' ' ' 0rR R r R rR R R rR R    + + − + =
     (31) 

The differential equation obtained above is highly nonlinear and no closed form solution exists 

hence we will apply numerical method specifically the RK4 method to solve it. 

Let the quantity dR dr  mathematically describes how the material has been deformed from the 

reference configuration to the current configuration. Then we can say that  

1r

dR
p

dr =

= −

           (32) 

where p is the initial pressure applied to the material externally. The negative sign does not 

necessarily mean the change is negative but rather it means a contraction or decrease in volume. 
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Equation (32) is physically true since an initially applied pressure will determine the magnitude of 

the quantity .dR dr  For the purpose of this research we take 
20.25 .p N m= To this end, we 

choose our initial condition as (1) 5, '(1) 0.25R R= = −      (33) 

We split the equation (31) into a system of first order ordinary differential equations by letting 

'( ) ( ) ''( ) '( )R r u r R r u r=  =          (33) 

We substitute equation (33) into equation (31), we get the system 

( ) 2 2
2 3

2

1

3 3 3

(1) 5, (1) 0.25

dR
u

dr

R rdu r
u u

dr rR R R

R u




= 


+ 

= − − 


= = − 

         (34) 

We solve the system (34) by Runge-Kutta fourth order method to obtain the radial coordinates in 

the current configuration. The stresses on the material can be computed from the obtained R values 

using the formula 

R r
E

r


−
=

           (35) 

Where E is the elastic modulus. We take E = 0.09 (Patel, 2008). 

We choose the step size 0.1h = for 1 2.r   Hence. 0 01, 5, 0.5r R = = = and 0 0.25.u = −  

( ), ,f r R u u=
 

( )
( ) 2 2

2 3

2

1
, ,

3 3 3

R r r
g r R u u u

rR R R

+
= − −

       (36) 

 

First iteration 

1 0 0 0( , , ) 0.025k hf r R u= = − , 1 0 0 0( , , ) 0.0395841667l hg r R u= =  

1 1
2 0 0 0, , 0.023020791

2 2 2

k lh
k hf r R u

 
= + + + = − 

  , 

1 1
2 0 0 0, , 0.03807593778

2 2 2

k lh
l hg r R u

 
= + + + = 

   

2 2
3 0 0 0, , 0.0230962031

2 2 2

k lh
k hf r R u

 
= + + + = − 

  , 

2 2
3 0 0 0, , 0.03807236517

2 2 2

k lh
l hg r R u

 
= + + + = 

   

( ) ( )4 0 0 3 0 3 4 0 0 3 0 3, , 0.021192763, , , 0.036700443k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )1 0 1 2 3 4

1
2 2 4.976928874

6
R R k k k k= + + + + =

 
 

Second iteration 

1 1 1 1( , , ) 0.021190313k hf r R u= = − 1 1 1 1( , , ) 0.0367004802l hg r R u= =  

1 1 1 1
2 1 1 1 2 1 1 1, , 0.019355289, , , 0.03544644046

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     
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2 2 2 2
3 1 1 1 3 1 1 1, , 0.019417991049, , , 0.035443620545

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 1 1 3 1 3 4 1 1 3 1 3, , 0.0176459510176, , , 0.03429264585k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )2 1 1 2 3 4

1
2 2 4.9575317371

6
R R k k k k= + + + + =

 
 

Third iteration 

1 2 2 2 1 2 2 2( , , ) 0.017644092, ( , , ) 0.03429266241k hf r R u l hg r R u= = − = =  

1 1 1 1
2 2 2 2 2 2 2 2, , 0.01592945915, , , =0.03323185465

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + +   

     

2 2 2 2
3 2 2 2 3 2 2 2, , 0.0159824995, , , 0.033229580968

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 2 2 3 2 3 4 2 2 3 2 3, , 0.014321134, , , 0.03224847231k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )3 2 1 2 3 4

1
2 2 4.9415668798

6
R R k k k k= + + + + =

 
 

Fourth iteration 

( ) ( )1 3 3 3 1 3 3 3, , 0.01431969217, , , 0.0322484765k hf r R u l hg r R u= = − = =
 

1 1 1 1
2 3 3 3 2 3 3 3, , 0.0127072683, , , 0.0313377685647

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

2 2 2 2
3 3 3 3 3 3 3 3, , 0.0127528037, , , 0.03133590195

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 3 3 3 3 3 4 3 3 3 3 3, , 0.0111861019759, , , 0.030488002387k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )4 3 1 2 3 4

1
2 2 4.9288292234

6
R R k k k k= + + + + =

 
 

Fifth iteration 

( ) ( )1 4 4 4 1 4 4 4, , 0.01118496, , , 0.03048799906584k hf r R u l hg r R u= = − = =
 

1 1 1 1
2 4 4 4 2 4 4 4, , 0.00966056, , , 0.02969603582

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

2 2 2 2
3 4 4 4 3 4 4 4, , 0.009700160048, , , 0.0296944798

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 4 4 3 4 3 4 4 4 3 4 3, , 0.00821551, , , 0.02895282206k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )5 4 1 2 3 4

1
2 2 4.91914223682

6
R R k k k k= + + + + =
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Sixth iteration 

( ) ( )1 5 5 5 1 5 5 5, , 0.0082145976,  , , 0.0289528142k hf r R u l hg r R u= = − = =
 

1 1 1 1
2 5 5 5 2 5 5 5, , 0.0067669569, , , 0.02825627368

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

2 2 2 2
3 5 5 5 3 5 5 5, , 0.068017839, , , 0.0282549598

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 5 5 3 5 3 4 5 5 3 5 3, , 0.0053891016, , , 0.0275992801k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )6 5 1 2 3 4

1
2 2 4.91235204

6
R R k k k k= + + + + =

 
 

Seventh iteration 

( ) ( )1 6 6 6 1 6 6 6, , 0.0053883549, , , 0.027599269k hf r R u l hg r R u= = − = =
 

1 1 1 1
2 6 6 6 2 6 6 6, , 0.00400839146, , , 0.026980460684

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

2 2 2 2
3 6 6 6 3 6 6 6, , 0.0040393319, , , 0.0269793394

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 6 6 3 6 3 4 6 6 3 6 3, , 0.002690421, , , 0.0263941305k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )7 6 1 2 3 4

1
2 2 4.90832300287

6
R R k k k k= + + + + =

 
 

Eighth iteration 

( ) ( )1 7 7 7 1 7 7 7, , 0.0026898049, , , 0.02639411856k hf r R u l hg r R u= = − = =
 

1 1 1 1
2 7 7 7 2 7 7 7, , 0.001370099, , , 0.0258393914

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

2 2 2 2
3 7 7 7 3 7 7 7, , 0.001397835,  , , 0.0258384261

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = − = + + + =   

     

( ) ( )4 7 7 3 7 3 4 7 7 3 7 3, , 0.0001059623, , , 0.025311631k hf r h R k u l l hg r h R k u l= + + + = − = + + + =
 

( )8 7 1 2 3 4

1
2 2 4.906934396869

6
R R k k k k= + + + + =

 
 

Ninth iteration 

( ) ( )1 8 8 8 1 8 8 8, , 0.0001054485,  , , 0.02531161856k hf r R u l hg r R u= = − = =
 

1 1 1 1
2 8 8 8 2 8 8 8, , 0.0116013240,  , , 0.02481028401

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = = + + + =   

     

2 2 2 2
3 8 8 8 3 8 8 8, , 0.01135065677, , , 0.024809447

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = = + + + =   

     

( ) ( )4 8 8 3 8 3 4 8 8 3 8 3, , 0.0023754962, , , 0.02433156k hf r h R k u l l hg r h R k u l= + + + = = + + + =
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( )9 8 1 2 3 4

1
2 2 4.908077804

6
R R k k k k= + + + + =

 
 

Tenth iteration 

( ) ( )1 9 9 9 1 9 9 9, , 0.0023759288, , , 0.0253062073k hf r R u l hg r R u= = = =
 

1 1 1 1
2 9 9 9 2 9 9 9, , 0.0036412392, , , 0.024798888

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = = + + + =   

     

2 2 2 2
3 9 9 9 3 9 9 9, , 0.0036158732, , , 0.024798139

2 2 2 2 2 2

k l k lh h
k hf r R u l hg r R u

   
= + + + = = + + + =   

     

( ) ( )4 9 9 3 9 3 4 9 9 3 9 3, , 0.0485574279, , , 0.02431436066k hf r h R k u l l hg r h R k u l= + + + = = + + + =
 

( )10 9 1 2 3 4

1
2 2 4.911655084

6
R R k k k k= + + + + =

 
 

Result 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Matlab plot of the current 

configuration vs the reference configuration Figure 2: A Matlab plot of the stress on the 

material vs the reference configuration 
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Discussion 

From the figure 1 above, we see that the radial coordinates in the reference configuration have an 

inverse relationship with the radial coordinates in the current configuration. That is to say, as r 

increases from 1 to 2, R decreases from 5 and attains a minimum of around 4.907. This is in 

agreement with reality since the material under study is externally pressurized, so a decrease in 

volume is expected. 

Figure 2 shows a plot of stress on the material, as seen in the figure, the stress decreases as we 

move outwards towards cylinder’s circumference, so a maximum stress is observed in the interior 

of the cylinder and a minimum on its surface. 

We have also compared the quantity dR dr  which describes the pressure on the cylinder in figure 

3, we observe that the pressure increases towards the center of the cylinder. This is true because 

the volume of the cylinder decreases implying that its area also decreases, so it is expected that 

more force will be applied in order to cause a deformation. 

 

Summary 

We considered the finite deformation of a compressible cylindrical elastic material subjected to 

torsion and twisting effect. We started by first obtaining the Cauchy green right deformation 

gradient tensor and the principal strain invariants in cylindrical coordinates, then used them 

together with the Blatz and Ko strain energy density function for compressible material to solve 

for the Cauchy stresses. The obtained physical components of the Cauchy stresses were substituted 

into the equilibrium equations in cylindrical coordinates and a highly nonlinear second order 

ordinary differential equation was obtained after simplification. Due to the high nonlinearity of the 

model equation, no analytical solution exists. Therefore, we imposed initial and boundary 

conditions to the model and applied the Runge-Kutta fourth order numerical technique to solve the 

proposed model using a step size of 0.1 with 10 iterations. We finally computed the stresses on the 

material. 

 

Figure 3: Effect of pressure p on the material 
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Conclusion 

We make the following conclusions from this work: 

● Compressibility plays an important role in the deformation of cylindrical elastic materials 

as a reduction in volume is seen for an externally applied pressure. 

● Torsion and twisting have no significant effect on the radial deformation of a compressible 

Blatz and Ko material. 

● A maximum pressure is obtained at the center of the cylinder while a minimum pressure is 

obtained at its circumference 

 

Recommendations 

 

• Other strain energy functions can be investigated using Shooting method and comparing 

the results with the ones presented in this work. 

• Different methods can be employed to solve and be compared with the Runge-Kutta 

method. 
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